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Abstract—If one is given two binary classifiers and a set of
test data, it should be straightforward to determine which of
the two classifiers is the superior. Recent work, however, has
called into question many of the methods heretofore accepted
as standard for this task. In this paper, we analyze seven ways
of determining if one classifier is better than another, given the
same test data. Five of these are long established and two are
relative newcomers. We review and extend work showing that
one of these methods is clearly inappropriate, and then conduct
an empirical analysis with a large number of datasets to
evaluate the real-world implications of our theoretical analysis.
Both our empirical and theoretical results converge strongly
towards one of the newer methods.

Keywords-Classifier Evaluation; Performance Metrics; Su-
pervised Learning;

I. INTRODUCTION

Given two trained classifiers and a set of testing data,

is it possible to determine which one is better? It would

certainly seem so, but there has been much work in recent

years that has exposed numerous potential difficulties within

this problem. A natural measure to evaluate a classifier on a

set of test data is accuracy; that is, the number of instances

in the test set on which the classifier’s prediction is correct

divided by the total number of instances. While this seems

acceptable as a performance measure, it is riddled with so

many problems [1], [2], [3], [4] that we will not even bother

to discuss it here.

In this paper, we examine seven possible methods of

determining if one classifier is superior to another given the

same test data. The first three are the F1-measure, average
precision, and precision at k, popular tools for performance

measurement in the information retrival and natural language

processing communities. The fourth is the phi coefficient,
which has gained more traction in medical and psycological

communities. The fifth is the AUC, a standard for many

years that has come under attack recently [5], [6] regarding

its validity. The sixth and seventh are the AUK and the H-
measure, two performance measures that purport to solve

some of the problems of the AUC. We examine the methods

both mathematically and empirically, and find some to be

more appealing than others on both counts.

The rest of this paper is organized as follows: Section II

introduces notation and formally defines each of our perfor-

mance measures. Section III reviews mathematics leading

to the conclusion that the AUC as a performance measure

is incoherent, then extends these mathematics to show that

the same notion of incoherence applies to the AUK as well.

Section IV describes some simple empirical tests that we

perform to compare the results of our mathematics to results

in the real world. Section V analyzes the outcome of these

experiments and Section VI concludes.

II. PRELIMINARIES

Consider that we have a set of training data, composed

of vectors of real values, each vector associated with a label

∈ {0, 1}, where we call 0 the “positive label” and 1 the

“negative label”. Now suppose we learn a classifier H on this

training set that, given some test vector x, outputs a single

real value as its prediction, H : x �→ �. Without loss of gen-

erality, we consider that when the output value, or “score”

is lower, this indicates a higher probability of belonging to

the positive class. Further suppose that we have a test set,

T , also composed of n labeled vectors, or test instances.

Given this test set, we can run each instance through H
and create a vector of scores, s = s1, s2, . . . , sn, with each

score si ∈ s corresponding to a classifier prediction on some

instance within the test set.

In keeping with the notation of [5], we can view the scores

of the positive instances in the test set as being drawn from

a probability distribution f0(s), with associated cumulative

distribution function F0(s), and similarly for the negative

class, with associated functions f1(s) and F1(s). We also

define the empirical probabilities within the test set of the

positive and negative classes, respectively, as π0 and π1.

Finally, we can define the overall distribution of scores,

f(s) = π0f0(s) + π1f1(s), and the associated cumulative

distribution F (s).

Now consider some threshold t on this distribution, such

that instances with a score s < t will be predicted to be

positive by the classifier. With a given t, the familiar notion

of false positive rate can be defined as fp(t) = F1(t),
and similarly the true positive rate or recall r(t) = F0(t).
The precision is the number of true positive predictions

divided by the total number of positive predictions, p(t) =
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π0F0(t)/F (t). The accuracy is proportion of correct predic-

tions, a(t) = π0F0(t) + π1(1− F1(t)).
In what follows we will group our measures into two

broad categories: The first, containing the F1-measure, the

phi coefficient, and precision at k will fall into the category

we will call point measures. That is, these measures give a

performance estimate at a particular threshold, ignoring all

others. The second category, containing all other measures,

we will call integrated measures, measures which give a per-

formance estimate by integrating over possible thresholds.

We will examine the point measures first.

A. The F1-Measure

With precision and recall defined, it is an easy matter to

define our first performance measure, the F1-measure1 [7].

The F1-Measure is, given some value of t, the balanced

harmonic mean of precision and recall:

MF1(t) =
2pr

p+ r
=

2π0F
2
0 (t)

F (t)

F0(t) +
π0F0(t)
F (t)

=
2π0F0(t)

F (t) + π0

The F1-measure is appealing in that the distribution of scores

is not necessary for its calculation. We need only to know the

number of true positives, false positives, and false negatives

given by some classifier. In addition, it is more useful than

accuracy as poor performance in terms of either precision

or recall to a low number.

If we have a distribution of scores, however, the F1-

measure loses some of its appeal in that we need to pick a

threshold to generate it. The most sensible choice, given our

score distributions, would seem to be the one that maximizes

the measure:

tF1 = argmax
t

MF1(t)

One way of comparing different classifiers, then, is to

compare the values of MF1(tmax) on the score distributions

generated by each classifier. Note that the values of tmax

may be different for different classifiers, but in each case

we choose a single t = tmax, the one that optimizes

performance, at which to evaluate each one.

B. The Phi Coefficient

The Phi Coefficient [8], also known as the Matthews
Correlation Coefficient is another threshold-based measure

of quality. Like the F1-Measure, it is designed to work on

data where the class distribution is skewed. For a binary

1Note that this F1 is not directly related the cumulative distribution
function of the negative class F1(s). In order to remain consistent with [5]
and avoid too much ambiguity, we use the non-traditional notation MF1(t)
to refer to the F1-Measure at a given threshold t.

classifier, in our notation, the measure can be computed as

follows:

φ(t) =
a(1− a)√

π0π1n2F (t)(1− F (t))
(1)

Again, because we must select a threshold for the measure,

it seems appropriate to select the threshold at which the

measure is maximized:

tφ = argmax
t

φ(t)

and using φ(tφ) to compare classifiers. We leave a full

discussion of φ to [8], but note anecdotally that while the

measure has gained some traction in the biological and

psychological communities, it is still not widely used in the

machine learning community.

C. r-Precision

A collection of measures that we refer to collectively as

precision at k measures are popular in information retrieval

[9]. To calculate precision at k, we find tk such that

nF (tk) = k, so exactly k examples are labeled positively.

The precision at k is then p(tk).
The choice of k is somewhat arbitrary in the literature,

with authors often reporting values for precision at several

values of k. Often, the domain will dictate the appropriate

value of k, such as search problems in which ten results per

page may be presented. Another popular choice is precision

at r or r-precision [10], where r = nπ0, the total number

of positive examples.

D. The Area Under the ROC Curve (AUC)

While the F1-measure gives us a good way to measure

performance, it forces us to make an explicit assumption

about the relative costs of misclassifying examples of each

class. The F1-measure assumes, by the definition of the bal-

anced harmonic mean, that precision and recall are equally

important. It is possible that this is not the case, and in cases

where one is significantly more important than the other,

performance may be dramatically different. We would like

a measure that does not require a choice of threshold.

The area under the ROC curve fits this requirement [1].

An ROC curve is a plot of F0(t) vs. F1(t) for varying t.
The ideal ROC curve is a right angle at (0, 1) so that there

is a choice of threshold that perfectly separates positive and

negative instances. An ROC curve that classifies the data

randomly is a diagonal line from (0, 0) to (1, 1). A natural

notion of performance is the area under this curve, which

we will call the AUC. Following [5], we set v = F1(t) and

define the AUC as: ∫ 1

0

F0(F
−
1 1(v))dv

Noting that dF1(t)/dt = f1(t), we can change the variable

of integration to t, giving the AUC in terms of the score
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distributions:

AUC =

∫ ∞

−∞
F0(t)f1(t)dt

We now compute performance by integrating over the

range of possible thresholds. Effectively, this measure av-

erages performance over all levels of specificity, and so we

are relieved of the burden of having to choose a threshold.

An important drawback here is that all levels of specificity

are often not equally likely in practice. In the case where

negative examples far outnumber positive ones (as in many

detection problems), high levels of specificity are typically

required to produce a useful system. Yet, even the empirical

data distributions, defined by π0 and π1 are not used when

computing the AUC. Some authors [11], [12] opt to resolve

this difficulty by computing only a portion of the AUC,

leading to the a priori choice of exactly which is the relevant

portion.

On top of this, there is significant area under the ROC

curve that is captured even by the random classifier, which

seems intuitively incorrect to include in our calculations

[6]. The Gini coefficient [13], a linear transformation of

the AUC, fixes this, but does so without considering the

underlying class distribution of the test data. We introduce

in Sections II-E and II-F two measures that attempt to fix

these difficulties.

E. Average Precision (AP)

As defined previously, a natural measure of performance

given a threshold t is the precision, p(t) = π0F0(t)/F (t),
which expresses how often the classifier is correct when

it predicts the positive class. Because we do not know

the relative importance of precision and recall in a given

application, a sensible step is to simply average the precision

at all possible levels of recall. With v as above:

AP =

∫ 1

0

p(F−1 1(v))dv =

∫ ∞

−∞
p(t)f1(t)dt

This measure, the average precision [10], [9], can also be

interpreted geometrically as the area under a precision-recall

curve. It is similar to the AUC as it integrates over all false

positive rates, but different in that it is computed using π0,

and thus takes into account the class distribution of the test

data.

F. The Area Under the Cohen’s κ Curve (AUK)

Given some t, and our score distributions, we can also

compute a measure known as Cohen’s κ [14], or κc:

κc(t) =
a(t)− pc(t)

1− pc(t)

where pc(t) = π0F (t) + π1(1 − F (t)) is the probability

of choosing the correct class by random chance, with the

distribution of guesses determined by the selected t.
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Figure 1. A comparison of two ROC curves and their corresponding
Cohen’s κ curves.

It is important to note that, given the class distribution of

the test data, κc is a function of t dictated completely by

the distributions of scores. We acknowledge this by making

it a function κc(t). One can then plot a curve with κc(t) on

the vertical axis and F1(t) on the horizontal. This curve is

differently shaped from the ROC (as seen in Figure 1), but

a larger area underneath still indicates a superior classifier.

We thus compute the area under this curve, the AUK [6],

as a performance measure. With the same definition of v
above:

AUK =

∫ 1

0

κc(F
−
1 1(v))dv =

∫ ∞

−∞
κc(t)f1(t)dt

This measure still integrates over levels of specificity,

treating them as equally likely, but uses κc to control for the

distribution of the data. From the definition of κc, we can

see that lima→pc κc(t) = 0, so that classifiers with accuracy

approaching random chance contribute increasingly less to

the AUK. Like average precision, the AUK appears to take

into account the class distribution of the test data while

avoiding specific loss assumptions regarding false positives

and false negatives.

G. The H-Measure

Another solution to the problems with the F-measure and

the AUC is the H-measure [5]. Rather than integrating over

levels of specificity, as do the AUC and AUK, the H-measure

integrates over possible costs of misclassification. Suppose

we have a function Q(t; b, c) that computes the loss on the

test set, where c (defined below) gives the relative cost of

misclassification for positive and negative examples, b is a

scaling factor, t is a threshold. If we have a distribution

u(c) over relative costs, and define T (c) as in Equation 3

below, we can integrate over this distribution to compute an

expected loss Lu:

Lu =

∫
Q(T (c); b, c)u(c)dc

By dividing by the maximum loss and subtracting from one,

we have a measure on the same scale as the others reviewed.

However, we have introduced the need to specify not just

relative misclassification costs, but a distribution over costs.
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It is suggested in [5] that a symmetric beta distribution is a

sensible assumption. But is this assumption necessary? After

all, the AUC, the AUK, and average precision appear to have

given us measures requiring no such assumptions. We will

see in the following section, however, that this is not strictly

true.

III. THE INCOHERENCE OF CERTAIN PERFORMANCE

MEASURES

Here we will first briefly review the mathematics of [5]

that shows the sense in which the AUC is incoherent, which

is done in Sections III-A and III-B. We then generalize this

to show that this incoherence applies to the AUK and many

related functions. We will pass over several of the subtle

points in [5] in the interest of brevity, but encourage the

reader to consult the original.

To conduct this examination, we introduce the variables

c0 and c1, representing the cost of misclassifying a positive

and a negative example, respectively. We also introduce c =
c0/(c0 + c1) as a variable which expresses the relative cost
of misclassification, and b = c0 + c1 to express the scale of

the combined costs.

Crucially, we note that the true values for c1 and c0 are

most certainly properties of the classification problem. For

example, in medicine, the cost of missing a positive case,

thereby allowing illness to go undetected, is often greater

than giving a false positive diagnosis. In this case, c0 >
c1. In contrast, algorithms for visual object detection may

prefer to miss a single positive image rather than present a

user with an image that does not contain the object, leading

to c1 > c0. Regardless of what these costs are, they are

dictated by the problem domain, and certainly not by the

classification algorithm.

A. The Relationship Between Cost and Threshold

With costs c0 and c1 in hand, it is easy to compute the

misclassification loss given some threshold t:

c0π0(1− F0(t)) + c1π1F1(t) (2)

Of course, given the ratio of the misclassification costs, there

will be some t = T (c) that minimizes the loss. Using c
instead of c0 and c1:

T (c) = argmin
t

cπ0(1− F0(t)) + (1− c)π1F1(t) (3)

The loss function Q for any t can be written as:

Q(t; b, c) = {cπ0(1− F0(t)) + (1− c)π1F1(t)}b (4)

Differentiating this expression and setting to zero gives an

equation that can be solved for the minimizing value of t:

cπ0f0(t) = (1− c)π1f1(t) (5)

with d2Q/dt2 = 0. There are a few problems with this

process. First is that there may be many values of t that

satisfy this expression. Second is that, in practice, F0 and

F1 are discrete and therefore not differentiable. Both of these

objections are dealt with in Section 5 of [5]. We assume for

the rest of this analysis that each c can be matched one-to-

one to a corresponding threshold t.
Given this one-to-one relationship, we can see that, given

some threshold, one can easily solve for the cost c(t) that

is minimized under this threshold:

c(t) =
π1f1(t)

π0f0(t) + π1f1(t)
(6)

We see then, that there is a correspondence between cost

and threshold. Semantically, this shows that our belief about

which threshold is appropriate implies a belief about the

relative cost of misclassification.

B. The Incoherence of the AUC

Given Equation 4, which gives the loss given some

threshold and misclassification costs, it is easy to calculate

the expected loss even when the misclassification costs

are unknown. All we require is a distribution w(c) over

relative misclassification costs. We then integrate over this

distribution to get the expected loss:

L =

∫ 1

0

{cπ0(1− F0(T (c))) + (1− c)π1F1(T (c))}w(c)dc

Of course, according to Section III-A, this is equivalent to

integrating over a distribution over thresholds, W (t):

L =

∫ ∞

−∞
{c(t)π0(1− F0(t)) + (1− c(t))π1F1(t)}W (t)dt

(7)

where c(t) is the cost implied by the threshold, as given

in Equation 6. Again, the form of w(c), and by extension

W (t), should certainly be dictated by the domain. However,

consider the case where we define a weighting WG(t) that

is instead dictated by the distribution of scores given by the
classifier:

WG(t) = π0f0(t) + π1f1(t) (8)

Substituting both Equations 8 and 6 into Equation 7 yields

the following expression for the weighted loss, LG:

LG =

∫ ∞

−∞
π0π1{f1(t)(1− F0(t)) + f0(t)F1(t)}dt

With a little bit of deft calculus in [5], we arrive at:

LG = 2π0π1

∫ ∞

−∞

∫ ∞

T

f1(t)f0(s)dsdt

= 2π0π1

(
1−

∫ ∞

−∞

∫ T

−∞
f0(s)dsf1(t)dt

)

= 2π0π1(1− AUC)

We thus obtain a linear transformation of the AUC simply by

computing the expected loss with different misclassification
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costs weighted according Equation 8. But Equation 8 defines

a weighting based on the distributions f0 and f1 of the scores

given by the classifier! The problem here is obvious: Our

tool for measurement (the AUC) is different depending on
what is being measured.

Here we come to the crucial point: Given two different

classifiers trained and tested on exactly the same data, the

AUC is actually measuring a different quantity for each
classifier. This is the sense in which the AUC is incoherent.

It is as if the meter were differently sized depending on

whether wood or steel were being measured, and using

measurements in such meters to compare the length of a

wooden object with that of a steel one!

C. The Incoherence of Integrated Performance Measures

We have, in Sections III-A and III-B, reviewed the math-

ematics in [5] that shows the incoherence of the AUC

as a performance measure. We show here, with a slight

generalization of this argument, that the AUK and average

precision are similarly incoherent.

To see this more clearly we first recall the weighting

function WG(t), which was a function of the threshold t,
from Equation 8. To this we add, for notational convenience,

another function of the threshold, WI(t):

WI(t) = f1(t)− f1(t)F0(t) + f0(t)F1(t) (9)

With this notation defined, we can prove the following:

Theorem 1. For any performance measure M of the form:

M =

∫ 1

0

m(F−1 1(v))dv

Where m(t) is a differentiable function of the threshold t,
M is equivalent, within a multiplicative constant, to the
expected loss with a distribution over thresholds (and by
Equation 6, misclassification costs) given by:

Wm(t) =
m(t)f1(t)WG(t)

WI(t)
(10)

where WI(t) and WG(t) are given by Equations 8 and 9,
respectively.

Proof: First, we change the variable of integration as

we have done for each of the integrated measures:

M =

∫ ∞

−∞
m(t)f1(t)dt

Next, by substitution of Equation 8 into Equation 6:

c(t) =
π1f1(t)

WG(t)

and by substituting this in turn into Equation 7:

L =

∫ ∞

−∞

{
π1f1(t)

WG(t)
π0(1− F0(t)) +

(
1− π1f1(t)

WG(t)

)
π1F1(t)

}
W (t)dt

=

∫ ∞

−∞

(
π0π1(f1(t)− f1(t)F0(t) + f0(t)F1(t))

WG(t)

)
W (t)dt

=

∫ ∞

−∞

(
π0π1WI(t)

WG(t)

)
W (t)dt

Substituting our constructed weighting Wm(t) from Equa-

tion 10 for W (t) gives the weighted loss Lm, and the

prescribed conclusion:

Lm =

∫ ∞

−∞

(
π0π1WI(t)

WG(t)

)(
m(t)f1(t)WG(t)

WI(t)

)
dt

= π0π1

∫ ∞

−∞
m(t)f1(t)dt

= π0π1M

D. A Note About The Point Measures

We saw in Section III-C that measures of loss based in-

tegrating some quantity over all possible thresholds implies

contradictory assumptions about the relative misclassifica-

tion cost. A crucial step in this line of inference is that

choosing a threshold value implies a belief about loss. What

about the F1-measure, the phi coefficient, and precision at

k?

Consider that each of these measures defines a loss2.

Furthermore, though we omit the proof, it should be clear

that each of these losses is differentiable with respect to

t, as they are fairly simple algebraic functions of F0(t)
and F1(t), which are themselves differentiable. We can thus

use differentiation to solve for the thresholds that minimize

each of these measures. Even more clearly, because our

distribution of thresholds is in practice discrete and finite, we

can simply test all possible thresholds to find the minimum

loss.

In our use of the F1-measure and the phi coefficient, we

compare the values of these measures taken at the threshold
at which they are maximized. Thus, our assumptions about

threshold and loss remain consistent. Note that this general-

izes to the case where the thresholds are set based on cross

validation or holdout data: If these measures are used for

evaluation, it would be inexplicable to choose the thresholds

that do not maximize these measures on the holdout data.

2For these measures, where the upper bound is unity and larger values
mean better classifiers, the implied loss would be 1 −m(t), where m is
the measure.
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In contrast, precision at k selects an arbitrary threshold

and allows this threshold to dictate the parameters of a

strange loss function of the form of Equation 2 where

c1 = 1/k and c0 = 0. Note that c = 0 under the above

definition of c, and thus this loss is trivially maximized at

any t such that F (t) = 0; when no examples are predicted

to be in the positive class. Clearly, this solution is not

satisfactory, and there is thus some level of incoherance here:

The threshold minimizing the loss appears to be incorrect.

Does this mean that precision at k is completely without

use? No. The measure is valid in cases where the constant k
is one that is imposed by the domain. A good example of this

occurs in search, when one may return, say, 10 results per

page. In this situation, precision at 10 is valid, as the domain

is imposing a loss function of this form. Measures such as

r-precision, in which r is set by the test data distribution,

are not domain-imposed losses, but losses chosen by the

evaluator.

E. Discussion

We see then, that the AUK and average precision suffer

from the same notion of incoherence as the AUC: That

it is equivalent to computing an expected loss, with the

weighting of various misclassification costs controlled by

the distribution of scores. In Section II, we saw that the

integrated measures are specifically constructed to avoid

having to make assumptions about the relative costs of

misclassification. In fact, however, Section III shows that this

is not the case at all. Not only have assumptions been made

by these measures, but the assumptions are different for

different classifiers operating on the same test data. While

the measures are all significantly different, none fix this most

crucial problem.

In contrast, the phi coefficient, F1-, and H- measures

do make explicit assumptions about the misclassification

cost. While this requires the individual researcher to make

a choice, thus costing the measure some objectivity, it is

clearly better than the inappropriate choice implicitly made

by average precision, the AUC, and the AUK. In light of this,

the main objection raised against the H-measure in [6] seems

to be baseless. Other objections raised in the same work,

that it is difficult to compute and has somewhat unclear

semantics, might be considered a small price to pay for

coherence.

IV. EXPERIMENTAL SETUP

In Section III, we reviewed and extended mathematical

objections to some performance measures, but how often

do these objections make a difference in practice? There

has been previous work [15] suggesting that, at least, ROC

curves of different classifiers on the same data rarely dom-

inate each other entirely, which opens up the possibility

of relative misclassification costs being at least somewhat

important.

Dataset Features Labels Instances
Landsat 36 6 6435
FBIS 2000 17 2459
Waveform 40 3 5000
Yeast 103 14 2417
Sound 52 10 3715

Table I
PROPERTIES OF THE DATASETS USED IN THESE TESTS.

All of the measures in Section II purport to do the same

thing: Given two classifiers, it will always assign a higher

value to the one that is “better”. As all of the notions

of “better” espoused by these measures seem intuitively

reasonable, one objective way to compare the measures is

to see how often one disagrees with all others. As such, we

have composed a collections of datasets, and have trained

a collection of classifiers over these datasets. For each pair

of classifiers on each dataset, we can compare them using

each of the four measures, then examine the cases in which

the measures disagree to assess the effectiveness of each

measure.

The datasets are described below and some of the prop-

erties are given in Table I. The proportion of the positive

class ranges from 0.9% to 73.5% with a median proportion

of 11.0%

• The “Landsat Satellite” Statlog dataset used in [16] and

several other papers, featuring multi-spectral images of

the earth taken from a satellite. The classification task

is to predict the type of vegetation or soil from the

spectral values of a 3x3 patch of the image.

• The “FBIS” text data set from TREC-09 used in [17]

and elsewhere, where the classification task is to predict

the topic of a document given word counts.

• The waveform database generator data used in [18] and

elsewhere. This is a synthetic dataset described in detail

in [19].

• The multi-label yeast gene function dataset described in

[20], which has become a benchmark in the multi-label

learning literature.

• The multi-label sound classification dataset described

in [21], in which small windows of sound are to be

labeled with one or more of 10 semantic concepts, such

as speech, music, crowd noise, etc.

To each of these datasets, we apply five different methods

of dimensionality reduction in order to further vary the

geometry of our data. In every case except k-means, the

number of dimensions is determined by using PCA and

selecting the smallest number of components such that

95% of the variance is captured. We use freely available

implementations3 of the following well-established methods,

surveyed in [22]:

3http://cseweb.ucsd.edu/∼lvdmaaten/dr/download.php
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• Principle Components Analysis

• Kernel Principle Components Analysis

• Locally Linear Embedding

• Neighborhood Preserving Embedding

• k-means: Clustering the data into 32 means and using

the distance from the point to each of the cluster

centroids as the feature vector for that point.

This leads to six different representations of each data set,

including the original unreduced representation. For each

representation of each dataset, we treat each label as a one-

vs.-rest binary labeling problem. On each problem, we train

nine different classifiers: Naı̈ve Bayes, logistic regression,

SVMs with linear kernels, SVMs with RBF kernels, 1-

nearest neighbor, 10-nearest neighbor, J48 decision trees,

adaboosted J48 decision trees, and adaboosted decision

stumps. For all of these, we use the default options in

the Weka [23] data mining package. We then do pairwise

comparisons of each pair of classifiers trained on a given

problem, resulting in 36 comparisons per problem.

V. RESULTS

In Figure 2 we see the 11188 classifier comparisons

broken out by level of agreement among the various per-

formance measures. In about 58% of these comparisons,

all measures agree on which of the two classifiers in the

comparison is better. We would expect, given that the goals

of each measure are the same, that this would be the case.

On the negative side, in the other 42% of cases, we see

that there is some level of disagreement among the measures,

with either one, two, or three measures disagreeing with the

majority. This means that, in nearly half of the comparisons

we make, we can decide which of the classifiers is better

simply by selecting a certain performance measure. This

examination, then, seems to be of practical importance.

Figure 2. A breakdown of the 11188 classifier comparisons by level of
agreement.
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We now concentrate our examination on the roughly 2300

comparisons in which one of the measures disagrees with

all others. These we will refer to as “error cases”. Given

that all of these measures have fairly deep precident in the

literature, the assumption made here is that if the evaluation

of one disagrees with that of the other six, this is because

the other six measures have all detected something that the

one has not. In this way, we can use number of error cases

as a way to quantify the “generality” of each measure.

It is important to understand that the true value for c, or

even the distribution u(c) is unknown for all of the test data.

If one knew the correct choice for c or u(c), one could use

that choice to evaluate classifiers; the measures discussed

here all substitute assumptions for this choice. Said another

way, it is only in the case where the true loss is unknown
that the measures discussed here are applicable. Thus, we do

not claim that a measure is wrong if it has more error cases.

We only claim that is is less general in that its assumptions

about u(c) disagree with the assumptions of the other six

measures more often.

The obvious null hypothesis here is that all measures

are equally general, and that the assumptions, implicit or

explicit, made by one will lead to no more error cases

than the assumptions made by the others. With no other

information, this seems reasonable.

Figure 3 shows us, unsurprisingly, that this is not the case.

We use the Wilson score interval [24] to plot 95% confidence

intervals on each bar, which shows us that the difference

between the number of error cases for the various measures

is indeed signifcant. We also use the G-test [25] to assure

ourseleves that the difference between the empirical results

and the null hypothesis is statistically significant, which it

is (G = 1095, p < 10−200).

The plot shows that the measures we identified as incoher-

ent make up a larger proportion of error cases than the other

measures. Importantly, the H-measure, engineered to make

the most sensible assumption about loss, performs much

better than all others, almost never disagreeing with all other

measures. The phi coefficent (labeled MCC for Matthews

Correlation Coefficient) also does well, dispite measuring

performance at only a single threshold.

It is interesting to break down the error cases further in

two ways. The first way, shown in Figure 4(a) is by the

data distribution. We plot the cases where the proportion of

the positive class in the test data is greater than the median

proportion versus cases where it is less. As we see in the

plot, the performance measures are extremely sensitive to

the data distribution. The AUC, for example, makes up a far

greater percentage of the errors when the data distribution is

highly skewed than when it is balanced. The F1-measure, on

the other hand, deals with skewed data much better than it

does with balanced data. Only the H-measure has extremely

low error rates in both cases.

The second breakdown, in Figure 4(b) is by the number

of unique thresholds in the data. Because our score distribu-

tions are discrete, one way of measuring differences in the

distributions is to count the number of unique thresholds in
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Figure 3. A comparison of performance measures by percentage of
disagreements with all other measures.
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the data. If scores are duplicated, this number will be lower.

Specifically, we measure the difference in the number of

unique thresholds between the two score distributions being

compared, normalized by the number of possible thresholds

(that is, the total number of scores).

We see in Figure 4(b) that, while not as important as data

distribution, this still seems to be a differentiating factor for

some measures. In particular, the AUK and AUC seem to

be sensitive to differences in the number of thresholds.

Finally, we would like to know if certain classifiers are

more likely to give rise to error cases than others. We thus

plot the total number of error cases which involve a given

classifier (that is, in comparisons where either one classifier

or the other is of the given type), normalized by the number

of total comparisons involving that classifier.

We see in Figure 5 that there is significant overlap

between the confidence intervals of many of the classifiers,

indicating the type of classifier is not particularly important

in identifying error cases. Crucially, this indicates that the

choice of performance measure is an important issue regard-

less of the classifiers under comparison.

VI. CONCLUSIONS

It appears, then, we have some level of consistency

between our theoretical and our empirical analysis. The

measures that we identified as making assumptions about

loss that are in some sense incoherent are shown, by our

empirical analysis, to evaluate classifiers in a way that

disagrees more often with other established measures. These

“error cases” for each performance measure are dependant

on the distribution of the test data and to a lesser extent on

the number of thresholds in the distribution of scores given

by the classifier. Finally, these error cases do not appear to

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
CC

F1−
M

ea
su

re

r−
Pre

cis
ion

H−M
ea

su
re

AUC

Ave
ra

ge
 P

re
cis

ion AUK

P
ro

po
rt

io
n 

of
 T

ot
al

 E
rr

or
 C

as
es

 

 
Positive class < 10.99%
Positive class >= 10.99%

(a) A breakdown of the error cases by positive class proportion
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(b) A breakdown of the error cases by the difference in the number
of unique thresholds of the score distributions of the two classifiers
being compared.

Figure 4. Two different breakdowns of the error cases.

be endemic to a particular classifier and thus all classifier

comparisons are potentially suspect.

A. Discussion

One implication of this work is that a researcher could

engineer “better performance” by selecting the right perfor-

mance measures. Given our analysis, this should be obvious.

We have shown that all of these measures make some

assumption about loss. By tuning the definition of loss, one

can make a classifier appear superior. It is thus extremely

important to note that, to our knowledge, none of these

measures are “loss neutral” in any mathematical sense.

We have also shown that, paradoxically, using a coherent

point measure such as F1 or φ is sometimes more general,
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Figure 5. A comparison of the ratio of total comparisons involving a given
classifier to comparisons involving that classifier where one performance
measure disagrees with all others.
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in that it disagrees less often with all other measures, than

ones that integrate over all thresholds. This points to the

coherance of the loss assumption as a crucial component of

any performance measure.

What of other performance measures? Some, like the

popular coverage metric [26], appear to fall in the group of

coherent point measures, since the threshold implies a loss

that is minimized at that threshold. Others, like the 11-point
average precision used in TREC competitions [27] appear

to fall in the same category as the H-measure, specifying an

explicit distribution over thresholds, then integrating over

this distribution. We suspect that other measures may be

shown to be making incoherent assumptions.

Finally, this work addresses a deep mathematical question

about classifier evaluation: Is it possible to evaluate a clas-

sifier in a strictly loss-neutral manner? The answer, as far

as we know currently, is an emphatic no. The alternative,

then is to make an assumption about the loss that is as

sensible as possible. In [5], we have not only the basis for

these analyses, but also a well-formulated assumption in the

proposed H-measure, the generality of which is borne out

in our experiments. We recommend the H-measure for all

future assessments of binary classification algorithms. As an

alternative, the maximizing value of φ would also seem to

be a coherent and sufficiently general choice.

B. A Note on Some Recent Related Work

Our analyses, and those in [5], attempt to show that

a certain class of performance measure does not measure

the same quantity when presented with different classifiers

tested on the same data, and is thus a broken tool for

measuring performance. We do this by showing a linear

relationship between this class of measures and a constructed

measure that is also broken in this fashion. This relationship

relies on the mapping between misclassification cost and

threshold given in Equations 5 and 6.
Recent work [28] makes an important objection: While

there is always a threshold that minimizes some cost, prac-

titioners who know the cost will rarely find this optimal

threshold in reality. As these analyses are based on this

mapping, one may be able to dismiss them outright as having

made assumptions that are unrealisitc. Instead, the authors

of [28] imagine an alternative way to view loss, referred to

as Lt
c, based on seperate integration over possible costs and

thresholds:

Lt
c �

∫ 1

0

∫ ∞

−∞
Qc(t; b, c)W (t) dt wc(c) dc

This gives us two choices to make, one for the distribution

of thresholds, W (t), and the other for the distribution of

misclassification costs, w(c). The authors show that the

AUC is equivalent to choosing a uniform distribution for

each. Thus, the AUC makes no assumptions about the cost

distribution and coherence is restored. While the authors say

nothing about other integrated measures, we do not doubt

that the same argument may apply.
This is an important and valid argument against these

analyses. Whom to believe? The choice here is between the

analysis based on expected loss [28] or the one based on

expected minimum loss [5]. At first, the argument based on

expected loss may be more appealing on the grounds that it

is clearly less optimistic. If our goal is to estimate absolute

performance, this may be a virtue.
However, our primary goal here is comparison. The as-

sumption in [28] is that all thresholds are equally likely even

if the loss function is known. In reality, this is far from the

truth: If a practitioner knows the loss function, she will be

able to choose a reasonable threshold using cross-validation,

a holdout set, or just intuition. She may not choose the

optimal threshold, but she is likely to be closer (probably
much closer) than random chance. In our analyses, we use

the optimal threshold as a proxy for the practioner’s choice.

In [28], the proxy is a completely random guess. We leave it

to the reader to decide which is a better basis for comparison.
It is also important to realize that even if one accepts

the assumptions in [28], one may dismiss the AUC on the

very grounds it is defended. The coherance of the AUC

relies on the assumption all costs and all thresholds are

equally likely. One may believe that the AUC is coherent

on these grounds, but still reject the idea that the quantity

it measures is inappropriate for classifier comparison. Our

empirical analyses here would support such a rejection.
Finally, the authors show that the H-measure can be shown

to be equivalent to using the “area under the cost curve” [29],

with two modifcations. One of these is that the H-measure

assumes a beta distribution for u(c) whereas cost curves

assume a uniform distribution. The intuition for the use of

525



the beta distribution is that, first, it assumes a bias towards

balanced costs given no other information, and second, the

distribution can easily be modified to incorporate domain

knowledge. The authors of [28] argue for the uniform

distribution on the basis that “the cost lines are straight”

and therefore easier to plot. We leave it to the reader to

decide which is the stronger argument.
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